

October 20, 2003 Comments NIST Draft Pub 800-38C

Table of contents

Table of contents...1

1 Comments on NIST Draft Pub 800-38C : CCM mode of operation..2

1.1 General Comments ...2

1.2 Specific comments..2

1.2.1 Generality and usefulness of CCM mode...2

1.2.2 Other specific comments ...3

2 Formal specification of the generic CCM* mode of operation...6

2.1 Notation and representation..6

2.1.1 Strings and string operations...6

2.1.2 Integers and their representation..6

2.2 Specification of CCM* mode of operation (in ‘ANSI style’) ...6

2.2.1 CCM* mode encryption and authentication transformation ...6

2.2.2 CCM* mode decryption and authentication checking transformation9

2.2.3 Restrictions ..9

2.3 Security of CCM* mode of operation ...10

2.4 Interoperability between CCM mode and CCM* mode of operation..10

2.5 Test vectors for CCM* mode of operation (in ‘ANSI style’) ...10

2.5.1 CCM* mode encryption and authentication transformation ...11

2.5.2 CCM* mode decryption and authentication checking transformation13

2.6 References..14

Submission Page 1 Rene Struik, Certicom

1 Comments on NIST Draft Pub 800-38C : CCM mode of operation

NIST Draft Pub 800-38C specifies the so-called CCM mode, a mode of operation that operates on block-ciphers
with a 128-bit block size and involves a particular combination of the so-called Counter (CTR) mode of operation
and the Cipher-Block Chaining (CBC) mode of operation [10], using a single key. Appendix A of this draft
specification gives a particular invocation of the generic CCM mode, which coincides with the CCM specification,
as contained in the Draft Amendment (as of July 2003) to the IEEE 802.11 WLAN standard [5].

1.1 General Comments

It is unclear what criteria NIST applied to decide on standardization of the CCM mode of operation proposed in [4],
rather than one of the alternative proposed combined encryption and authentication modes. In particular, the CCM
mode has some disadvantages not shared by some of these alternatives, such as it being only defined with block
ciphers with 128-bit block size and it requiring the length of the input data to be known beforehand. This being said,
it is laudable that NIST recognizes the relevance the CCM mode of operation has acquired, due to the incorporation
hereof in quite a few wireless standards that recently emerged, including the IEEE 802.11 WLAN standard [5], and
the IEEE 802.15 High-Rate and Low-Rate WPAN standards [6], [7].

Below, I will give some more detailed comments on the draft and some suggestions for its improvement. Most
comments are inspired by the particular invocation of the CCM mode in Appendix A of the draft specification,
which corresponds to the original CCM specification proposed in [4].

1.2 Specific comments

1.2.1 Gene ral i ty and usefulness of CCM mode

The draft CCM specification is at times very general and at times too restrictive.

1.	 NIST elected to specify the CCM mode in such a general way that implementers of the draft standard have
ample room to select their own formatting and counter generating functions. Although the conditions under
which the proof of the CCM mode [8], [9] applies might justify some generality, it is hard to see how this
generality would promo te interoperability, a major objective of standardization.

2.	 Despite the general approach followed, the draft CCM specification is unnecessarily restricted elsewhere: it is
very well possible to define the CCM mode without completely fixing the bit representation of integers (e.g., by
representing integers as octet strings and leaving the representation of octet strings as bit strings up to the
implementation environment). For an example of how this may be realized, see Section 2 of this review note.

3.	 The original CCM mode[4] provides for data authentication and, possibly, confidentiality, but does not provide
for confidentiality only. This is unfortunate, since not all implementation environments call for data authenticity
(e.g., since data authenticity is provided by an external mechanism). It is a pity that NIST has not seized the
opportunity to extend the definition of the original CCM mode, such as to provide for confidentiality-only
services, in addition to the other security service options already offered. For an example of how to extend the
original CCM mode to provide for any combination of data authenticity and confidentiality, see Section 2 of
this review note.

October 20, 2003	 Comments NIST Draft Pub 800-38C

4.	 The original CCM mode [4] is known to be vulnerable to specific attacks, if used with variable-length
authentication tags rather than with fixed-length authentication tags only (see, e.g., Section 3.4 of [12]). Thus,
the original CCM mode can only be used in settings with fixed-length authentication tags. It is a pity that NIST
does not seem to have incorporated the results of that paper, such as to avoid these attacks altogether. For an
example of how to adapt the original CCM mode such that the resulting mode can be used securely with
variable-length authentication tags, rather than fixed-length authentication tags only, see, again, Section 2 of
this review note. (Variable-length authentication tags are useful in, e.g., secured wireless sensor networks [7],
where applications on a device might have different protection requirements, but would have to share the same
key, due to resource constraints.)

1.2.2 Other speci f ic comments

1.2.2.1 Section 3

1.	 Page 4, line 2: replace ‘that can provide … data’ by ‘that may provide assurances of the authenticity and,
possibly, confidentiality of data’.

2.	 Page 4, line –3: replace ‘CCM shall not be used with 3DES’ by ‘CCM cannot be used with 3DES’ (after all, the
block size of 3DES does not fit with the use of CCM).

3.	 Page 5, line 8: it is strange that the number of block cipher invocations with the same key is expressed in terms
of number of octets. Replace by ‘The generation-encryption process of the CCM mode shall invoke at most 260

block cipher calls with the same key’. The rationale for this constraint is unclear to me: why not having as upper
bound of 264 block cipher invocations?

4.	 Page 5, line –1: the reference to the IEEE 802.11 WLAN standard is missing. See [5] in Section 2.6 of this
review note.

1.2.2.2 Section 4

Page 5, Item 2 (‘Authenticity’): replace ‘The property that data originated from its purported source’ by ‘Evidence

that data originated from its purported source’.

Page 6, Item 8 (‘Data inegrity’): the term ‘unauthorized entity’ is not defined.

Page 6: Add definition of ‘Inverse cipher function’.

Page 7, Item 2 (‘m’): According to Section 6.1, Step 5, the integer m refers to the length of the payload, in number
of blocks (rounded upwards), rather than to the number of blocks in the formatted input (note that formatted input
also contains, e.g., associated data).

Page 7, Item –6: add a ‘full stop’ at the end.

1.2.2.3 Section 5

1.	 Section 5.1, Page 9, line –1, -2: the bit length of the AES key is irrelevant in this specification. Replace by ‘The
CCM key is the block cipher key K of length Klen bits. With this key, the forward cipher function of the block
cipher is denoted CIPHK.

2.	 Section 5.2, Page 9, line 10: the term ‘data origin authentication’ is not defined in Section 4.1.
3.	 Section 5.3, Page 9, lines 1-5: what about encryption-only? See also Comment 3 of Section 1.2.1 of this review

note.

4.	 Section 5.3, Page 9, lines 6-9: to allow the secure use of the CCM mode with variable -length authentication
tags, one has to impose the following additional constraint: “one shall be able to uniquely determine the length
of the applicable authentication tag from the counters blocks”. See also Comment 4 of Section 1.2.1 of this
review note and Section 2.3 of this review note.

5.	 Section 5.3, Page 9, footnote: the term ‘mode’ seems to have a specific meaning. Replace by ‘authentication
mode’ by ‘authentication provision’.

Submission	 Page 3 Rene Struik, Certicom

6.	 Section 5.4, Page 10, lines 7-8 (Property 2): this property contains some typos, me thinks. Why not replace the
whole property by the following description?: ‘The authentication transformation operates on input strings B0 ||
B1 || B2 || ... ||Bt from which one can uniquely determine the input strings a and m (as well as the nonce N). In
fact, for any two input strings corresponding to distinct triples (N, m, a), neither one is a prefix string of the
other.

7.	 Section 5.4, Page 10, lines 9-10 (Property 3): I suggest replacing this property by the following: “Over the
lifetime of the key, all the counter blocks are distinct from the B0 fields that are actually used”. This slightly
relaxes the conditions under which the CCM security proof applies. For a further security discussion on this, see
also Section 2.3 of these review notes.

8.	 Section 5.4, Page 10, line 11: replace ‘implies’ by ‘suggests’. After all, a logical implication cannot yield a non-
mandatory statement (‘should not’).

9.	 Section 5.5, Page 10, line 1: there does not seem to be a need to completely specify the representation of
integers within the CCM specification. See also Comment 2 of Section 1.2.1 of this review note.

1.2.2.4 Section 6

1.	 Section 6.1, Page 11, Step 3: replace ‘Yj’ by ‘Yi’, i.e., replace the subscript ‘j’ by the subscript ‘i’.
2.	 Section 6.1, Page 11, line –2, -1: the valid nonce is not formatted according to the formatting function, as

suggested. I suggest replacement of this sentence by the following: “The input data to the generation-encryption
function are a valid nonce, a valid payload string, and a valid associated data string. The input data is
transformed using the formatting function.”

3.	 Section 6.1, Page 11-12: the upper bound on the number of block cipher invocations, as hinted at in Section 3,
Page 5, line 8 (see also Comment 3 of Section 1.2.2.1 of this review note) is not included as a mandatory
requirement in the CCM mode specification. Either the requirement is real, in which case it needs to be
included, or it is unreal, in which case it needs to be dropped from Section 3 of the draft specification document.

1.2.2.5 Appendix A

1.	 Appendix A2.1, Page 15, line 6: Replace “The Reserved bit … is set to ‘0’” by “The Reserved bit … shall be set
to ‘0’”.

2.	 Appendix A, Pages 14-16: One can generalize the original CCM mode, to allow a wider application appeal. See
Section 2 of this review note. This extension is compatible with the CCM mode as used in, e.g., the 802.11
WLAN standard (See Section 2.4 of this review note).

1.2.2.6 Appendix B

1.	 Appendix B, Page 17, 3rd paragraph: the rationale for the so-called ‘default recommendation’ for Tlen is unclear
to me. Why not use a formulation similar to Appendix B in FIPS Pub 198 [3]? From a practical perspective, the
‘proper’ value of the length of the authentication tag is always the result of a risk-benefit analysis. Any absolute
statement on ‘proper’ authentication lengths is, therefore, to be disadvised.

1.2.2.7 Appendix C

1.	 Appendix C, Page 18, line 3: replace ‘the the’ by ‘the’.

1.2.2.8 Appendix D

Appendix D, Page 22: add the following references:

[1] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.11-1999, IEEE Standard for
Telecommunications and Information Exchange Between Systems – LAN/MAN Specific Requirements – Part

October 20, 2003 Comments NIST Draft Pub 800-38C

11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications, New York: IEEE Press,
1999.

[2] J. Jonsson, On the Security of CTR + CBC-MAC, in Proceedings of Selected Areas in Cryptography – SAC
2002, K. Nyberg, H. Heys, Eds., Lecture Notes in Computer Science, Vol. 2595, pp. 76-93, Berlin: Springer,
2002.

[3] P. Rogaway, D. Wagner, A Critique of CCM, IACR ePrint Archive 2003-070, April 13, 2003.

Submission Page 5 Rene Struik, Certicom

2 Formal specification of the generic CCM* mode of operation

CCM* is a generic combined encryption and authentication block cipher mode. CCM* is only defined for use with
block ciphers with a 128-bit block size, such as AES-128 [2]. The CCM* ideas can easily be extended to other block
sizes, but this will require further definitions.

The CCM* mode coincides with the original CCM mode specification ([4], Appendix A of [10]) for messages that
require authentication and, possibly, encryption, but does also offer support for messages that require only
encryption. As with the CCM mode, the CCM* mode requires only one key. The security proof for the CCM mode
[8], [9] carries over to the CCM* mode described here. The design of the CCM* mode takes into account the results
of [12], thus allowing it to be securely used in implementation environments for which the use of variable-length
authentication tags, rather than fixed-length authentication tags only, is beneficial.

2.1 Notation and representation

2.1.1 Str ings and str ing operat ions

A string is a sequence of symbols over a specific set (e.g., the binary alphabet {0,1} or the set of all octets). The
length of a string is the number of symbols it contains (over the same alphabet). The right-concatenation of two
strings x and y (over the same alphabet) of length m and n respectively (notation: x || y), is the string z of length m+n
that coincides with x on its leftmost m symbols and with y on its rightmost n symbols. An octet is a symbol string of
length 8. In our context, all octets are strings over the binary alphabet.

2.1.2 Integers and their representat ion

Throughout this specification, the representation of integers as octet strings and of octets as binary strings shall be
fixed. All integers shall be represented as octet strings in most-significant-octet first order. This representation
conforms to the conventions in Section 4.3 of ANSI X9.63-2001 [1].

2.2 Specification of CCM* mode of operation (in ‘ANSI style’)

Prerequisites: The following are the prerequisites for the operation of the generic CCM* mode:

1.	 A block-cipher encryption function E shall have been chosen, with a 128-bit block size. The length in bits of the
keys used by the chosen encryption function is denoted bykeylen.

2.	 A fixed representation of octets as binary strings shall have been chosen (e.g., most-significant-bit first order or
least-significant-bit-first order).

3.	 The length L of the message length field, in octets, shall have been chosen. Valid values for L are the integers 2,
3, ..., 8 (the value L=1 is reserved).

4.	 The length M of the authentication field, in octets, shall have been chosen. Valid values for M are the integers 0,
4, 6, 8, 10, 12, 14, and 16. (The value M=0 corresponds to disabling authenticity, since then the authentication
field is the empty string.)

2.2.1 CCM* mode encrypt ion and authent icat ion transformat ion

Input: The CCM* mode forward transformation takes as inputs:

1.	 A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to this
key is restricted to the entity itself and its intended key sharing group member(s).

2.	 A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.

October 20, 2003	 Comments NIST Draft Pub 800-38C

3.	 An octet string m of length l(m) octets, where 0 £ l(m) < 28L .
4.	 An octet string a of length l(a) octets, where 0 £ l(a) < 264.

The nonce N shall encode the potential values for M such that one can uniquely determine from N the actually used
value of M. The exact format of the nonce N is outside the scope of this specification and shall be determined and
fixed by the actual implementation environment of the CCM* mode.

Note: The exact format of the nonce N is left to the application, to allow simplified hardware and software
implementations in particular settings. Actual implementations of the CCM* mode may restrict the values of M that
are allowed throughout the life-cycle of the encryption key Key to a strict subset of those allowed in the generic
CCM* mode. If so, the format of the nonce N shall be such that one can uniquely determine from N the actually
used value of M in that particular subset. In particular, if M is fixed and the value M=0 is not allowed, then there are
no restrictions on N, in which case the CCM* mode reduces to the CCM mode.

2.2.1.1 Input t ransformat ion

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be
used by the authentication transformation and the encryption transformation, respectively.

This step involves the following steps, in order:

1.	 Form the octet string representation L(a) of the length l(a) of the octet string a, as follows:
a.	 If l(a)=0, then L(a) is the empty string.
b.	 If 0 < l(a) < 216-28, then L(a) is the 2-octets encoding of l(a) .
c.	 If 216-28 £ l(a) < 232, then L(a) is the right-concatenation of the octet 0xff, the octet 0xfe, and the 4-octets

encoding of l(a).
d.	 If 232 £ l(a) < 264, then L(a) is the right-concatenation of the octet 0xff, the octet 0xff, and the 8-octets

encoding of l(a).

2.	 Right-concatenate the octet string L(a) with the octet string a itself. Note that the resulting string contains l(a)
and a encoded in a reversible manner.

3.	 Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non
negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.

4.	 Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non
negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16.

5.	 Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = AddAuthData || PlaintextData.

2.2.1.2 Authent icat ion transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

1.	 Form the 1-octet Flags field consisting of the 1-bit Reserved field, the 1-bit Adata field, and the 3-bit
representations of the integers M and L, as follows:

Flags = Reserved || Adata || M || L.

Here, the 1-bit Reserved field is reserved for future expansions and shall be set to ‘0’. The 1-bit Adata field is
set to ‘0’ if l(a)=0, and set to ‘1’ if l(a)>0. The M field is the 3-bit representation of the integer (M-2)/2 if M>0
and of the integer 0 if M=0, in most-significant-bit-first order. The L field is the 3-bit representation of the
integer L-1, in most-significant-bit-first order.

Submission	 Page 7 Rene Struik, Certicom

2.	 Form the 16-octet B0 field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field N, and
the L-octet representation of the length field l(m) , as follows:

B0 = Flags || Nonce N || l(m) .

3.	 Parse the message AuthData as B1 || B2 || ... ||Bt, where each message block Bi is a 16-octet string.

4.	 The CBC-MAC value Xt+1 is defined by

X0 := 0128; Xi+1 := E(Key, Xi ¯ Bi) for i=0, ... , t.

Here, E(K , x) is the cipher-text that results from encryption of the plaintext x, using the established block-cipher
encryption function E with key Key; the string 0128 is the 16-octet all-zero bit string.

5.	 The authentication tag T is the result of omitting all but the leftmost M octets of the CBC-MAC value Xt+1 thus
computed.

2.2.1.3 Encrypt ion transformat ion

The data PlaintextData that was established in clause 2.2.1.1 (step 4) and the authentication tag T that was
established in clause 2.2.1.2 (step 5) shall be encrypted using the encryption t ransformation as follows:

1.	 Form the 1-octet Flags field consisting of two 1-bit Reserved fields, and the 3-bit representations of the integers
0 and L, as follows:

Flags = Reserved || Reserved || 0 || L.

Here, the two 1-bit Reserved fields are reserved for future expansions and shall be set to ‘0’. The ‘0’ field is the
3-bit representation of the integer 0, in most-significant-bit -first order. The L field is the 3-bit representation of
the integer L-1, in most-significant-bit -first order.

2.	 Define the 16-octet Ai field consisting of the 1-octet Flags field defined above, the 15-L octet nonce field N , and
the L-octet representation of the integer i, as follows:

Ai = Flags || Nonce N || Counter i, for i=0, 1, 2, …

Note that this definition ensures that all the Ai fields are distinct from the B0 fields that are actually used, as
those have a Flags field with a non-zero encoding of M in the positions where all Ai fields have an all-zero
encoding of the integer 0 (see clause 2.2.1.2, step 2).

3.	 Parse the message PlaintextData as M1 || ... ||Mt, where each message block Mi is a 16-octet string.

4.	 The ciphertext blocks C1, ... , Ct are defined by

Ci := E(Key, Ai) ̄ Mi for i=1, 2, ... , t.

5.	 The string Ciphertext is the result of omitting all but the leftmost l(m) octets of the string C1 || ... || Ct.

6.	 Define the 16-octet encryption block S0 by

S0:= E(Key , A0).

7.	 The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M octets of S0
and the authentication tag T.

October 20, 2003	 Comments NIST Draft Pub 800-38C

Output: If any of the above operations has failed, then output ‘invalid’. Otherwise, output the right-concatenation of
the encrypted message Ciphertext and the encrypted authentication tag U.

2.2.2 CCM* mode decrypt ion and authent icat ion checking transformation

Input: The CCM* inverse transformation takes as inputs:

1.	 A bit string Key of length keylen bits to be used as the key. Each entity shall have evidence that access to this
key is restricted to the entity itself and its intended key-sharing group member(s).

2.	 A nonce N of 15-L octets. Within the scope of any encryption key Key, the nonce value shall be unique.

3.	 An octet string c of length l(c) octets, where 0 £ l(c)-M < 28L.
4.	 An octet string a of length l(a) octets, where 0 £ l(a) < 264.

2.2.2.1 Decrypt ion transformat ion

The decryption transformation involves the following steps, in order:

1.	 Parse the message c as C ||U, where the right-most string U is an M-octet string. If this operation fails, output
‘invalid’ and stop. U is the purported encrypted authentication tag. Note that the leftmost string C has length
l(c)-M octets.

2.	 Form the padded message CiphertextData by right-concatenating the string C with the smallest non-negative
number of all-zero octets such that the octet string CiphertextData has length divisible by 16.

3.	 Use the encryption transformation in clause 2.2.1.3, with as inputs the data CipherTextData and the tag U.

4.	 Parse the output string resulting from applying this transformation as m || T, where the right-most string T is an
M-octet string. T is the purported authentication tag. Note that the leftmost string m has length l(c)-M octets.

2.2.2.2 Authent icat ion checking transformat ion

The authentication checking transformation involves the following steps, in order:

1.	 Form the message AuthData using the input transformation in Clause 2.2.1.1, with as inputs the string a and the
octet string m that was established in clause 2.2.2.1 (step 4).

2.	 Use the authentication transformation in Clause 2.2.1.2, with as input the message AuthData .

3.	 Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause
2.2.2.1 (step 4). If MACTag=T, output ‘valid’; otherwise, output ‘invalid’ and stop.

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the octet string m. Otherwise,
accept the octet string m and accept one of the key sharing group member(s) as the source of m.

2.2.3 Restr ict ions

All implementations shall limit the total amount of data that is encrypted with a single key. The CCM* encryption
transformation shall invoke not more than 261 block-cipher encryption function operations in total, both for the
CBC-MAC and for the CTR encryption operations.

At CCM* decryption, one shall verify the (truncated) CBC-MAC before releasing any information, such as, e.g.,
plaintext. If the CBC-MAC verification fails, only the fact that the CBC-MAC verification failed shall be exposed;
all other information shall be destroyed.

Submission	 Page 9 Rene Struik, Certicom

2.3 Security of CCM* mode of operation

The CCM* mode coincides with the original CCM mode specification [4] for messages that require authentication
and, possibly, encryption, but also offers support for messages that require only encryption. As with the CCM mode,
the CCM* mode requires only one key. The CCM* specification differs from the CCM specification, as follows:

•	 The CCM* mode allows the length of the authentication field M to be zero as well (the value M=0
corresponding to disabling authenticity, since then the authentication field is the empty string).

•	 The CCM* mode imposes a further restriction on the nonce N: it shall encode the potential values for M such
that one can uniquely determine from N the actually used value of M.

As a result, if M is fixed and the value M=0 is not allowed, then there are no additional restrictions on N, in which
case the CCM* mode reduces to the CCM mode. In particular, the proof of the CCM mode (see [8], [9]) applies.

For fixed-length authentication tags, the CCM* mode is equally secure as the original CCM mode. For variable-
length authentication tags, the CCM* mode completely avoids – by design – the vulnerabilities that do apply to the
original CCM mode.

For fixed-length authentication tags, the security proof of the original CCM mode carries over to that of the CCM*
mode (also for M=0), by observing that the proof of the original CCM mode relies on the following properties,
which slightly relax those stated in [8], [9] (relaxed property indicated in italics):

•	 The B0 field uniquely determines the value of the nonce N.

•	 The authentication transformation operates on input strings B0 || B1 || B2 || ... ||Bt from which one can uniquely
determine the input strings a and m (as well as the nonce N). In fact, for any two input strings corresponding to
distinct triples (N, m, a), neither one is a prefix string of the other.

•	 All the Ai fields are distinct from the B0 fields that are actually used (over the lifetime of the key), as those have
a Flags field with a non-zero encoding of M in the positions where all Ai fields have an all-zero encoding of the
integer 0.

Hence, if M is fixed, then the CCM* mode offers the same security properties as the original CCM mode:
confidentiality over the input string m and data authenticity over the input strings a and m, relative to the length of
the authentication tag. Obviously, if M=0, then no data authenticity is provided by the CCM* mode itself (but may
be provided by an external mechanism).

For variable-length authentication tags, the original CCM mode is known to be vulnerable to specific attacks (see,
e.g., Section 3.4 of [12]). These attacks may arise with the original CCM mode, since the decryption transformation
does not depend on the length of the authentication tag itself. The CCM* mode avoids these attacks altogether, by
requiring that one shall be able to uniquely determine the length of the applicable authentication tag from the Ai

fields (i.e., from the counters blocks).

2.4 Interoperability between CCM mode and CCM* mode of operation

The CCM* mode reduces to the CCM mode in all implementation environments where the length of the
authentication tag is fixed and where the value M=0 (encryption-only) is not allowed. In particular, the CCM* mode
is compatible with the CCM mode, as specified in the Draft Amendment (as of July 2003) to the IEEE 802.11
WLAN standard [5] and as specified in the IEEE 802.15.3 WPAN standard [6]. The IEEE 802.15.4 WPAN standard
[7] currently incorporates the CCM mode with variable -length authentication tags; the upcoming security
amendment is anticipated to involve replacement of the CCM mode by the CCM* mode of operation, to securely
support variable-length authentication tags in its target application area – low-cost sensor networks.

2.5 Test vectors for CCM* mode of operation (in ‘ANSI style’)

Prerequisites: The following prerequisites are established for the operation of the mode of operation:

October 20, 2003	 Comments NIST Draft Pub 800-38C

The block-cipher mode of operation used in this specification shall be the CCM* mode of operation, as specified in
clause 2.2, with the following instantiations:

1.	 Each entity shall use the block-cipher AES-128 as specified in [2];

2.	 All octets shall be represented in most-significant-bit-first order;

3.	 The parameter L shall have the integer value 2;

4.	 The parameter M shall have the integer value 8.

2.5.1 CCM* mode encrypt ion and authent icat ion t ransformat ion

Input: The inputs to the mode of operation are:

1.	 The key Key of size keylen=128 bits to be used:

Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2.	 The nonce N of 15-L=13 octets to be used:

Nonce = A0 A1 A2 A3 A4 A5 A6 A7 || 03 02 01 00 || 06.

3.	 The octet string m of length l(m)=23 octets to be used:

m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E.

4.	 The octet string a of length l(a)=8 octets to be used:

a = 00 01 02 03 04 05 06 07.

2.5.1.1 Input t ransformat ion

This step involves the transformation of the input strings a and m to the strings AuthData and PlainTextData, to be
used by the authentication transformation and the encryption transformation, respectively.

1.	 Form the octet string representation L(a) of the length l(a) of the octet string a:

L(a) = 00 08.

2.	 Right-concatenate the octet string L(a) and the octet string a itself:

L(a) || a =00 08 || 00 01 02 03 04 05 06 07.
3.	 Form the padded message AddAuthData by right-concatenating the resulting string with the smallest non

negative number of all-zero octets such that the octet string AddAuthData has length divisible by 16.

AddAuthData = 00 08 || 00 01 02 03 04 05 06 07 || 00 00 00 00 00 00.

4.	 Form the padded message PlaintextData by right-concatenating the octet string m with the smallest non
negative number of all-zero octets such that the octet string PlaintextData has length divisible by 16:

PlaintextData = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 ||
 18 19 1A 1B 1C 1D 1E || 00 00 00 00 00 00 00 00 00.

5.	 Form the message AuthData consisting of the octet strings AddAuthData and PlaintextData:

AuthData = 00 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 ||
 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

 18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00.

2.5.1.2 Authent icat ion transformation

The data AuthData that was established above shall be tagged using the tagging transformation as follows:

Submission	 Page 11 Rene Struik, Certicom

1.	 Form the 1-octet Flags field as follows:

Flags = 59.

2.	 Form the 16-octet B0 field as follows:

B0 = 59 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 17.

3. Parse the message AuthData as B1 || B2 ||B3, where each message block Bi is a 16-octet string.

4. The CBC-MAC value X4 is computed as follows:

i Bi Xi

0 59 A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 00 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1 00 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 F7 74 D1 6E A7 2D C0 B3 E4 5E 36 CA 8F 24 3B 1A

2 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 90 2E 72 58 AE 5A 4B 5D 85 7A 25 19 F3 C7 3A B3

3 18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00 5A B2 C8 6E 3E DA 23 D2 7C 49 7D DF 49 BB B4 09

4 � B9 D7 89 67 04 BC FA 20 B2 10 36 74 45 F9 83 D6

5.	 The authentication tag T is the result of omitting all but the leftmost M=8 octets of the CBC-MAC value X4:

T = B9 D7 89 67 04 BC FA 20.

2.5.1.3 Encrypt ion transformat ion

The data PlaintextData shall be encrypted using the encryption transformation as follows:

1.	 Form the 1-octet Flags field as follows:

Flags = 01.

2. Define the 16-octet Ai field as follows:

i Ai

0 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 00

1 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 01

2 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 02

3. Parse the message PlaintextData as M1 ||M2, where each message block Mi is a 16-octet string.

4. The ciphertext blocks C1, C2 are computed as follows:

i AES(Key,Ai) Ci = AES(Key,Ai) ̄ Mi

1 12 5C A9 61 B7 61 6F 02 16 7A 21 66 70 89 F9 07 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10

2 CC 7F 54 D1 C4 49 B6 35 46 21 46 03 AA C6 2A 17 D4 66 4E CA D8 54 A8 35 46 21 46 03 AA C6 2A 17

5.	 The string Ciphertext is the result of omitting all but the leftmost l(m)=23 octets of the string C1 ||C2:

CipherText = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8.

6.	 Define the 16-octet encryption block S0 by

S0= E(Key, A0)= B3 5E D5 A6 DC 43 6E 49 D6 17 2F 54 77 EB B4 39.
7. The encrypted authentication tag U is the result of XOR-ing the string consisting of the leftmost M=8 octets of

S0 and the authentication tag T:

U=0A 89 5C C1 D8 FF 94 69.

October 20, 2003	 Comments NIST Draft Pub 800-38C

Output: the right-concatenation c of the encrypted message Ciphertext and the encrypted authentication tag U:

c = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8 ||
 0A 89 5C C1 D8 FF 94 69.

2.5.2 	 CCM* mode decrypt ion and authent icat ion checking transformat ion

Input: The inputs to the inverse mode of operation are:

1.	 The key Key of size keylen=128 bits to be used:
Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF.

2.	 The nonce N of 15-L=13 octets to be used:
Nonce = A0 A1 A2 A3 A4 A5 A6 A7 || 03 02 01 00 || 06.

3.	 The octet string c of length l(c)=31 octets to be used:
c = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8 ||

 0A 89 5C C1 D8 FF 94 69.

4.	 The octet string a of length l(a)=8 octets to be used:
a = 00 01 02 03 04 05 06 07.

2.5.2.1 Decrypt ion transformat ion

The decryption transformation involves the following steps, in order:

1.	 Parse the message c as C ||U, where the right-most string U is an M-octet string:

C = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 || D4 66 4E CA D8 54 A8;

U = 0A 89 5C C1 D8 FF 94 69.

2.	 Form the padded message CiphertextData by right-concatenating the string C with the smallest non-negative
number of all-zero octets s uch that the octet string CiphertextData has length divisible by 16.

CipherTextData = 1A 55 A3 6A BB 6C 61 0D 06 6B 33 75 64 9C EF 10 ||

D4 66 4E CA D8 54 A8 || 00 00 00 00 00 00 00 00.

3.	 Form the 1-octet Flags field as follows:

Flags = 01.

4.	 Define the 16-octet Ai field as follows:

i Ai

0 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 00

1 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 01

2 01 || A0 A1 A2 A3 A4 A5 A6 A7 03 02 01 00 06 || 00 02

5.	 Parse the message CiphertextData as C1 ||C2, where each message block Ci is a 16-octet string.

6.	 The ciphertext blocks P1, P2 are computed as follows:

i AES(Key,Ai) Pi= AES(Key,Ai) ̄ Ci

1 12 5C A9 61 B7 61 6F 02 16 7A 21 66 70 89 F9 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

2 CC 7F 54 D1 C4 49 B6 35 46 21 46 03 AA C6 2A 17 18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00

7. The octet string m is the result of omitting all but the leftmost l(m)=23 octets of the string P1 || P2:

m = 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 || 18 19 1A 1B 1C 1D 1E.

Submission	 Page 13 Rene Struik, Certicom

8.	 Define the 16-octet encryption block S0 by

S0= E(Key, A0)= B3 5E D5 A6 DC 43 6E 49 D6 17 2F 54 77 EB B4 39.

9.	 The purported authentication tag T is the result of XOR-ing the string consisting of the leftmost M=8 octets of
S0 and the octet string U:

T = B9 D7 89 67 04 BC FA 20.

2.5.2.2 Authent icat ion checking transformat ion

The authentication checking transformation involves the following steps, in order:

1.	 Form the message AuthData using the input transformation in Clause 2.5.1.1, with as inputs the string a and the
octet string m that was established in clause 2.5.2.1(step 7):

AuthData = 08 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 ||

08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

 18 19 1A 1B 1C 1D 1E 00 00 00 00 00 00 00 00 00.

2.	 Use the authentication transformation in Clause 2.5.1.2, with as input the message AuthData to compute the
authentication tag MACTag:

MACTag = B9 D7 89 67 04 BC FA 20.

3.	 Compare the output tag MACTag resulting from this transformation with the tag T that was established in clause
2.5.2.1(step 9):

T = B9 D7 89 67 04 BC FA 20 = MACTag.
Output: Since MACTag=T, output ‘valid’ and accept the octet string m and accept one of the key sharing group
member(s) as the source of m.

2.6 References

[1] ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry - Key Agreement and Key
Transport Using Elliptic Curve Cryptography, American Bankers Association, November 20, 2001. Available
from http://www.ansi.org.

[2] FIPS Pub 197, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication
197, US Department of Commerce/N.I.S.T, Springfield, Virginia, November 26, 2001. Available from
http://csrc.nist.gov/.

[3] FIPS Pub 198, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing
Standards Publication 198, US Department of Commerce/N.I.S.T., Springfield, Virginia, March 6, 2002.
Available from http://csrc.nist.gov/.

[4] R. Housley, D. Whiting, N. Ferguson, Counter with CBC-MAC (CCM), submitted to N.I.S.T., June 3, 2002.
Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

[5] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.11-1999, IEEE Standard for
Telecommunications and Information Exchange Between Systems – LAN/MAN Specific Requirements – Part
11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications, New York: IEEE Press,
1999.

[6] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.15.3-2003, IEEE Standard for Information
Technology — Telecommunications and Information Exchange between Systems — Local and Metropolitan
Area Networks — Specific Requirements — Part 15.3: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPAN). New York: IEEE Press.
2003.

http://csrc.nist.gov/encryption/modes/proposedmodes
http:http://csrc.nist.gov
http:http://csrc.nist.gov
http:http://www.ansi.org

October 20, 2003 Comments NIST Draft Pub 800-38C

[7] Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.15.4-2003, IEEE Standard for Information
Technology — Telecommunications and Information Exchange between Systems — Local and Metropolitan
Area Networks — Specific Requirements — Part 15.4: W ireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPAN). New York: IEEE Press.
2003.

[8] J. Jonsson, On the Security of CTR + CBC-MAC, in Proceedings of Selected Areas in Cryptography – SAC
2002, K. Nyberg, H. Heys, Eds., Lecture Notes in Computer Science, Vol. 2595, pp. 76-93, Berlin: Springer,
2002.

[9] J. Jonsson, On the Security of CTR + CBC-MAC, NIST Mode of Operation – Additional CCM Documentation.
Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

[10] NIST Pub 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation – Methods and
Techniques, NIST Special Publication 800-38A, 2001 Edition, US Department of Commerce/N.I.S.T.,
December 2001. Available from http://csrc.nist.gov/.

[11] NIST Pub 800-38C, DRAFT Recommendation for Block Cipher Modes of Operation – The CCM Mode for
Authentication and Confidentiality, NIST Special Publication 800-38C, Draft, US Department of
Commerce/N.I.S.T., Springfield, Virginia, September 4, 2003. Available from http://csrc.nist.gov/.

[12] P. Rogaway, D. Wagner, A Critique of CCM, IACR ePrint Archive 2003-070, April 13, 2003.

Submission Page 15 Rene Struik, Certicom

http:http://csrc.nist.gov
http:http://csrc.nist.gov
http://csrc.nist.gov/encryption/modes/proposedmodes

